Electron holography for the study of magnetic nanomaterials.
نویسندگان
چکیده
Transmission electron microscopes fitted with field-emission guns (to provide coherent electron waves) can be adapted to record the magnetic fields within and surrounding nanoparticles or metal clusters, for example, the lines of force of a nanoferromagnet encapsulated within a multiwalled carbon nanotube. Whereas most chemists are aware that electron microscopy readily identifies crystallographic symmetries and phases, solves structures, and, in conjunction with electron energy-loss spectroscopy, yields valence states and electronic information of materials, relatively few know that it can also provide important quantitative information, with nanometer-scale spatial resolution, pertaining to such materials' magnetic properties. In this Account, with the aid of representative examples embracing solid-state chemistry, geochemistry, and bio-inorganic phenomena, we illustrate how off-axis electron holography affords deep insight into magnetic phenomena on the nanoscale. Specifically, we describe the unprecedented level of information available regarding the magnetic nature of magnetotactic bacteria, magnetic nanoparticle chains and chiral bracelets, and geochemically relevant phenomena involving exsolution (the un-mixing of two mineral phases, as in the magnetite-ulvöspinel system). It is, for example, possible to reveal vortices and multidomain states that have no net magnetization in minute blocks of magnetite. With the current burgeoning interest and activity in nanoscience and nanotechnology, our Account concludes with examples of some existing enigmas that electron holography, especially when augmented by the related technique of electron tomography, might play an important experimental role in resolving, such as the occurrence of ferromagnetism in nanocrystals of silver within carbon tubes and in clusters of alkali metals incarcerated within zeolites.
منابع مشابه
Mesoporous Carbon Modified with Iron Oxide Based Magnetic Nanomaterials for Removal of Malachite Green Dye From Aqueous Solution
Mesoporous carbon (CMK-3) modified with Fe3O4 nanoparticles has been successfully synthesized and characterized by powder X-ray diffraction (XRD), N2 adsorption-desorption, scanning electron microscope (SEM) and transmission electron microscopy (TEM).The results depict that the synthesized Fe-CMK-3 preserved the ordered mesoporous structure of CMK-3, and magnetic species were dispersed insi...
متن کاملPreparation of Fe3O4@SiO2 Nanostructures via Inverse Micelle Method and Study of Their Magnetic Properties for Biological Applications
In this work, we report synthesis of superparamagnetic iron oxide nanoparticles at room temperature using microemulsion template phase consisting of cyclohexane, water, cetyltrimethylammonium bromide CTAB as cationic surfactant and butanol as a cosurfactant. Silica surface modification of the as prepared nanoparticles was performed by adding tetraethoxysilane TEOS to alkaline medium. The struct...
متن کاملPreparation of Fe3O4@SiO2 Nanostructures via Inverse Micelle Method and Study of Their Magnetic Properties for Biological Applications
In this work, we report synthesis of superparamagnetic iron oxide nanoparticles at room temperature using microemulsion template phase consisting of cyclohexane, water, cetyltrimethylammonium bromide CTAB as cationic surfactant and butanol as a cosurfactant. Silica surface modification of the as prepared nanoparticles was performed by adding tetraethoxysilane TEOS to alkaline medium. The struct...
متن کاملMagnetic Nanoporous Silica as Carriers for Ibuprofen: Adsorption and Release Study
A carrier system based on nanoporous silica (SBA-15) with magnetic nanoparticles of CoFe2O4 was synthesized via the impregnation of cobalt salt, iron salt and citric acid with as-synthesized SBA-15. The obtained samples were characterized by small angle X-ray scattering (SAXS), N2 adsorption/desorption, scanning electron microscopy (SEM), vibrating sample magnetometer (VSM) and ultraviolet (UV)...
متن کاملThe Effect of Magnetic Nanoparticles along with Magnetic Experimental Modeling for the Desalination of the Caspian Sea Water
In this study, samples were taken of coastal waters of Kiashahr port. Magnetic desalination consisted of exposing the sample to a Magnetic field and putting the water in physical contact with magnetic nanoparticles which were synthesized with the co-precipitation method. X-ray diffractometer, Fourier transform infrared spectroscopy and field-emission scanning electron microscopy were used for t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Accounts of chemical research
دوره 41 5 شماره
صفحات -
تاریخ انتشار 2008